

CUG 2009 Proceedings 1 of 9

Understanding Aprun Use Patterns

Hwa-Chun Wendy Lin, NERSC

ABSTRACT: On the Cray XT, aprun is the command to launch an application to a set
of compute nodes reserved through the Application Level Placement Scheduler (ALPS).
At the National Energy Research Scientific Computing Center (NERSC), interactive
aprun is disabled. That is, invocations of aprun have to go through the batch system.
Batch scripts can and often do contain several apruns which either use subsets of the
reserved nodes in parallel, or use all reserved nodes in consecutive apruns. In order to
better understand how NERSC users run on the XT, it is necessary to associate aprun
information with jobs. It is surprisingly more challenging than it sounds. In this paper,
we describe those challenges and how we solved them to produce daily per-job reports
for completed apruns. We also describe additional uses of the data, e.g. adjusting
charging policy accordingly or associating node failures with jobs/users, and plans for
enhancements.

KEYWORDS: XT4, CNL, ALPS, apsched, aprun, Torque, Moab

1. Introduction
NERSC is a Department of Energy (DOE) computing

facility providing resources to researchers in a wide range
of disciplines, including climate/weather studies, high
energy physics, chemistry, materials sciences,
Engineering, and computer sciences. Researchers have to
have their proposals approved by DOE to receive
allocations to compute at NERSC. How to make best use
of limited funds is always a challenge.

The newest addition to the NERSC computing

facilities is nicknamed Franklin, which went into
production in October 2007. It then went through a series
of upgrades and settled in as a 9,532 node quad-core Cray
XT4 system. With so many nodes available and per DOE,
NERSC has adopted a policy giving discounts to large
jobs, to encourage users to scale up their programs. But
then the question becomes whether users are gaming the
system to take advantage of this policy. That is, are users
asking for a large number of nodes at the job level, but
using subsets of them in parallel at the application level?

The initial attempt to answer this question was just to

find large jobs that launched applications in parallel, and

generate a daily report. But the more we dug into it, the
more we thought the information we were able to gather
about applications could be useful in many other ways. As
a result, we abandoned the original approach, and decided
to split the tasks into two separate parts. The first script
would collect all information for all invocations of
applications and group it based on job ID and save it to a
file. This is the data gathering part. A second script would
post-process the resulting data file and generate a report.
This is the data consumption part.

2. The Players

2.1 ALPS (Application Level Placement Scheduler)

According to the ALPS introduction man page,

ALPS (Application Level Placement Scheduler) is the
Cray supported mechanism for placing and launching
applications on the Cray XT compute nodes. This support
is limited to the CNL (Compute Node Linux)
environment, where nodes run a stripped down Linux
kernel and very few daemons.

CUG 2009 Proceedings 2 of 9

There is not much documentation about ALPS other
than man pages. Michael Karo of Cray gave presentations
at the last three CUG conferences. His slides for the 2006
presentation provide a good source for understanding
ALPS. ALPS is designed to work with multiple workload
managers, i.e., batch systems. Among the core services
listed, resource reservation management is the service of
interest in managing batch jobs. The daemon that supports
this functionality is apsched, which runs on Franklin’s
SDB (System Database) node to coordinate all reservation
requests. The user command in ALPS that places and
launches applications to the compute nodes is called
aprun, which is functionally equivalent to the generic
application launcher mpiexec or the AIX specific
application launcher poe.

ALPS also supports interactive application

executions. However the focus of this project is on
applications running under a batch system, because
NERSC policy disables interactive use of the compute
nodes, for more effective resource control.

2.2 Torque/Moab

Cray officially supports three major batch systems:
Altair’s PBSPro, Cluster Resources Incorporated’s
Torque, and Platform Computing’s LSF (Load Sharing
Facility). The batch system choice at NERSC is Torque,
with Moab as the scheduler. Torque is an OpenPBS
derivative, with the typical server and execution hosts
(aka MOMs, where user job scripts run). However, on the
XT, compute nodes are execution hosts but they don’t run
the MOM daemon. Instead, there are service nodes set
aside to be MOM nodes, on which applications are
launched via the aprun command. This is different from
the one-execution-host/one-MOM setup for systems
running full-blown OS on compute nodes. The Moab job
scheduler on the XT manages the scheduling policy
enforcement as it normally does, but it doesn’t manage
the compute nodes. The responsibility of allocating and
de-allocating the computing resource falls on ALPS.

2.3 Job Life Cycle

Karo, in his CUG 2006 and 2007 presentations,

provides a comprehensive picture to show the life cycle of
a job.

CUG 2009 Proceedings 3 of 9

The WLM (Work Load Manager) in the diagram
refers to all three pieces in a batch system: PBS server,
MOM, and the scheduler. When a job is submitted to the
batch system, it stays in an input queue until the WLM
receives a go-ahead from ALPS, indicating a reservation
consisting of nodes suitable to run the job is available to
the job. Only then the MOM launches the desired shell
and starts the job script. When a script runs, commands
other than the ones preceded with the aprun keyword get
executed on the MOM node. An application is launched
to all or a subset of the reserved nodes via the aprun
command

A reservation can be in “FILED”, “CONFIRMED”,

“CLAIMED” state, or some combination of the three.
According to Karo in his CUG 2006 presentation, FILED
means a reservation request is filed (registered with
ALPS), CONFIRMED means resources are locked, and
CLAIMED means resources are in use. The FILED state
did not appear to be relevant to this project, and was not
studied. This was verified with Karo. Apparently, the
design of ALPS was based on a two-phase commit. The
job scheduler, e.g. Moab on Franklin, gets a reservation
for a job from ALPS, which puts the reservation in the
FILED state. Moab then instructs the PBS server to start
the job script on a MOM node. As part of starting up the
script, MOM confirms the reservation, which puts the
reservation in the CONFIRMED state. The current
Torque/Moab implementation, though, does the filing and
confirming back to back, and the FILED state can be
ignored.

Once a reservation enters the CONFIRMED state, it

can be used by an application (or applications for MPMD
(Multiple Programs Multiple Data) jobs. When
applications are launched via aprun, the reservation enters
the CLAIMED state. At the conclusion of an aprun run,
the reservation goes back to CONFIRMED until it’s
cancelled by WLM. We use the timestamps for
confirming and cancelling a reservation as markers for the
job starts/ends, and those of claiming and releasing the
reservation as the application starts/ends. Multiple apruns
can share a reservation simultaneously or consecutively.
We will illustrate difference uses of aprun in the
Examples section.

3. Data Gathering

3.1. Reservation information sources

The primary source for reservation information is the

apsched log. On Franklin, the log lives in
sdb:/var/log/alps and is switched each day around
midnight. The records we are interested in are:

“Confirmed”, “Bound”, “Placed”, “Released”, and
“Canceled”. The Confirmed, Bound, and Canceled
records are job specific. The information from the Bound
record is merged with the Confirmed record to mark the
starting of a reservation/job script. The Confirmed and
Canceled, which marks the end of a job script are linked
by an ALPS’s “apid”. The Placed and Released records
are application specific, they are also linked by an apid,
and they mark the start and end of an application. All five
records have the same “resId” (Reservation ID) for the
same job, while the last four also have the same “pagg”
(session ID). There are as many pairs of Placed and
Released records as there are apruns. Below is an example
of these records.

20:26:11: Confirmed apid 437380 resId 1749 \

pagg 0 nids: 6454-6513
20:26:11: Bound Batch System ID 5828057 \

pagg 61513 to resId 1749
20:26:40: Placed apid 437384 resId 1749 \

pagg 61513 uid 32407 MPMD cmd cpl \
nids: 6454-6513

01:28:30: Released apid 437384 resId 1749 \
pagg 61513 claim

01:30:04: Canceled apid 437380 resId 1749 \
pagg 61513

How to associate applications with a job then? In XT

2.1, the Bound record has the job ID, as shown above,
thus the apsched log has all information needed to re-
construct the application information for jobs. But in XT
2.0, job ID is not stored in the apsched log. It has to come
from the set_job record in the syslog in
sdb:/syslog/var/log/messages. Here is a set_job record:

Apr 11 20:26:11 nid00576 pbs_mom: set_job,\

/opt/moab/default/tools/partition.create.xt4.pl \
–confirm -p 1749 -j 5828057.nid00003 -a 61513

where the “-j” specifies the job ID while the “-p” the
reservation ID and “-a” the session ID. The reservation ID
and session ID are the key to linking job pieces,
regardless of where the job ID comes from.

Notice this very same set_job record is also present in

the syslog in XT 2.1. It’s true that it’s easier to process
just one file, the apsched log. In fact, after the XT 2.1
upgrade, we removed syslog scanning from the picture.
However we plan to revert back to using both files. We
will discuss why in the Future Enhancements section.

CUG 2009 Proceedings 4 of 9

Scenarios for different aprun use patterns are

provided in the Examples section, which should help
better understand how the source records are tied
together.

3.2 The aprundat script

The data gathering program is called aprundat, and is

a Perl script. It runs every day early in the morning to
post-process the previous day’s log files. As mentioned
previously, the apsched log is switched daily; however,
the syslog is not. The syslog is switched manually every
so often when the system boots. A complete set of records
that allow us to group apruns by job consist of five
records from the apsched log and the set_job record from
the syslog, as described earlier. We collectively call them
information source records, or just source records.

The source records might be, and often are, spread

out across days. Relevant information about specific
apruns is accumulated as the daily processing progresses.
At the end of a run, aprun records for completed jobs, one
per aprun, are written to a data file, which is used by the
report generating facilities (to be discussed in the Data
Consumption section). For jobs that are still in progress,
information from various source records that have been
processed are written to an overflow file. This overflow
file is read in the following day to re-build the past events.

Due to system crashes and occasional ALPS mess-

ups, some source records will never be able to bind
together to describe a job. We discard old source records
after two days (the walltime limit for Franklin jobs is 36
hours). The discarded records are saved to a file with
_expired as the suffix. On occasions, we get complete
aprun information records, but can’t locate job IDs. We
save these to a file with _incomplete as the suffix. The
primary reason for having _incomplete records stems
from matching difficulty with two logs—information goes
out of sync more easily when it’s available in two
different places. After we stopped using the syslog for job
ID, we see fewer _incomplete records. The _expired and
_incomplete files are usually results of system troubles.
System administrators might be able to make use of these
files.

In the directory to store aprundat run outputs, four

new files come to existence each day. The names of the
files for the same day all start with the same date stamp,
followed by a file type identifier. For example, for May 9,
2008, the file names are 20080509_aprundat,

20080509_overflow, 20080509_expired, and
20080509_incomplete.

Here are a few _aprundat records that are used in the

Data Consumption section to demonstrate report
generation. The fields are “;” separated, and give, in the
order they appear, job ID, nodes assigned, start time, end
time, user login, command name, and nodes used.

504757;3445-3572; \

1210346785;1210375032; \
userzzz;lesmpi.a;3445-3572

504758;12677-12693,12698-12735,12800-12829; \
1210339493;1210339500; \
useryyy;ddt-debugger; \
12677-12693,12698-12735,12800-12829

504759;12704-12735,12800-12831; \
1210339704;1210339708; \
userxxx;RadHyd3D; \
12704-12735,12800-12831

504759;12704-12735,12800-12831; \
1210339892;1210339936; \
userxxx;RadHyd3D; \
12704-12735,12800-12831

504759;12704-12735,12800-12831; \
1210339963;1210339988; \
userxxx;RadHyd3D; \
12704-12735,12800-12831

504759;12704-12735,12800-12831; \
1210341258;1210341393; \
userxxx;RadHyd3D_check; \
12704-12735,12800-12831

4. Data Consumption

4.1. The aprunrpt script

The aprunrpt script can be run anytime against a

<date>_aprundat file to generate a report. With the
20080509_aprundat as input, this report generator, by
default, produces output as shown below. With the “-m”
option, it will only report jobs with multiple apruns. That
means, with the example, the entries for jobs 504757 or
504758 will be suppressed. The script doesn’t report
nodes list because there is no good way to display it
cleanly. However the script is written in Perl, it’s easy to
add more options to get, for example, job/user specific
entries, or all jobs completed during a specific time
period.

504757 128 128 \

CUG 2009 Proceedings 5 of 9

08/05/09 08:26:25 08/05/09 16:17:12 \
userzzz lesmpi.a

504758 85 85 \
08/05/09 06:24:53 08/05/09 06:25:00 \
useryyy ddt-debugger

504759 64 64 \
08/05/09 06:28:24 08/05/09 06:28:28 \
userxxx RadHyd3D

 64 \
08/05/09 06:31:32 08/05/09 06:32:16 \
userxxx RadHyd3D

 64 \
08/05/09 06:32:43 08/05/09 06:33:08 \
userxxx RadHyd3D

 64 \
08/05/09 06:54:18 08/05/09 06:56:33 \
userxxx RadHyd3D_check

4.2 The Franklin completed job status page

On its website, NERSC provides a completed job

status page, one for each system. The data generated by
the aprundat script are used to provide nodes list and to
populate the aprun section on the Franklin page. Below is
a web display copy for job 504759.

Job details

Step ID 504759.nid00003 Job Name STDIN
Owner userxxx Account Status 265

Execution queue interactive Submit class interactive Job type

Nodes 64 Wall secs 1,928 Wall hrs 0.54

Available cores per node 2 Requested secs 1,800 Requested hrs 0.50

MPP secs 1,604,096 MPP hrs 445.58 Raw Secs 246,784

Submit May-09-08 06:26:41 Start May-09-08 06:26:54 Wait 00:00:13

Completion May-09-08 06:59:02 systime 0 usrtime 0

Nodelist 12704-12735, 12800-12831
*Indicates dispatch time

List of aprun commands executed in this job

Number of aprun commands: 4

Command Nodes Used Run Time (secs) Start Complete Nodelist
RadHyd3D 64 4 May-09-08 06:28:24 May-09-08 06:28:28 12704-12735, 12800-12831

RadHyd3D 64 44 May-09-08 06:31:32 May-09-08 06:32:16 12704-12735, 12800-12831

RadHyd3D 64 25 May-09-08 06:32:43 May-09-08 06:33:08 12704-12735, 12800-12831

RadHyd3D_check 64 135 May-09-08 06:54:18 May-09-08 06:56:33 12704-12735, 12800-12831

Examples
We ran the ping_pong program under batch with four

slightly different aprun requests to show how reservations
were made and claimed for each scenario. For each
example, the first block is the batch job script; the second,
source records from the apsched log; the third, the set_job

record from the syslog; the last, the resulting aprun
information entry in the <date>_aprundat file.

5.1 Job with a single application instance

#PBS -q debug
#PBS -l mppwidth=64
cd $PBS_O_WORKDIR

CUG 2009 Proceedings 6 of 9

aprun -n 64 ./ping_pong

17:37:35: Confirmed apid 411088 resId 349 \

pagg 0 nids: 12622-12627,12632-12641
17:37:36: Bound Batch System ID 5820466 \

pagg 73126 to resId 349
17:37:37: Placed apid 411089 resId 349 \

pagg 73126 uid 40877 cmd ping_pong \
nids: 12622-12627,12632-12641

17:37:57: Released apid 411089 resId 349 \
pagg 73126 claim

17:38:15: Canceled apid 411088 resId 349 \
pagg 73126

Apr 7 17:37:36 nid00576 pbs_mom: set_job, \

/opt/moab/default/tools/partition.create.xt4.pl \
--confirm -p 349 -j 5820466.nid00003 -a 73126

5820466;12622-12627,12632-12641; \

1239151057;1239151077; \
hclin;ping_pong; \
12622-12627,12632-12641

5.2 Job with multiple application instances launched in
succession

#PBS -q debug
#PBS -l mppwidth=64
cd $PBS_O_WORKDIR
aprun -n 64 ./ping_pong
aprun -n 32 ./ping_pong
aprun -n 48 ./ping_pong

17:42:12: Confirmed apid 411111 resId 356 \

pagg 0 nids: 12800-12815
17:42:13: Bound Batch System ID 5820474 \

pagg 852 to resId 356
17:42:13: Placed apid 411112 resId 356 \

pagg 852 uid 40877 cmd ping_pong \
nids: 12800-12815

17:42:34: Released apid 411112 resId 356 \
pagg 852 claim

17:42:34: Placed apid 411113 resId 356 \
pagg 852 uid 40877 cmd ping_pong \
nids: 12800-12807

17:42:45: Released apid 411113 resId 356 \
pagg 852 claim

17:42:45: Placed apid 411115 resId 356 \

pagg 852 uid 40877 cmd ping_pong \
nids: 12800-12811

17:43:00: Released apid 411115 resId 356 \
pagg 852 claim

17:43:11: Canceled apid 411111 resId 356 \
pagg 852

Apr 7 17:42:13 nid04096 pbs_mom: set_job, \

/opt/moab/default/tools/partition.create.xt4.pl \
--confirm -p 356 -j 5820474.nid00003 -a 852

5820474;12800-12815; \

1239151333;1239151354; \
hclin;ping_pong; \
12800-12815

5820474;12800-12815; \
1239151354;1239151365; \
hclin;ping_pong; \
12800-12807

5820474;12800-12815; \
1239151365;1239151380; \
hclin;ping_pong; \
12800-12811

5.3Job with multiple application instances launched in
parallel

#PBS -q debug
#PBS -l mppwidth=64
cd $PBS_O_WORKDIR
aprun -n 8 ./ping_pong &
aprun -n 32 ./ping_pong &
aprun -n 16 ./ping_pong
wait

17:43:14: Confirmed apid 411117 resId 357 \

pagg 0 nids: 12800-12815
17:43:14: Bound Batch System ID 5820475 \

pagg 1162 to resId 357
17:43:15: Placed apid 411119 resId 357 \

pagg 1162 uid 40877 cmd ping_pong \
nids: 12800-12803

17:43:15: Placed apid 411120 resId 357 \
pagg 1162 uid 40877 cmd ping_pong \
nids: 12804-12805

17:43:15: Placed apid 411121 resId 357 \
pagg 1162 uid 40877 cmd ping_pong \
nids: 12806-12813

17:43:18: Released apid 411120 resId 357 \
pagg 1162 claim

CUG 2009 Proceedings 7 of 9

17:43:20: Released apid 411119 resId 357 \
pagg 1162 claim

17:43:25: Released apid 411121 resId 357 \
pagg 1162 claim

17:44:14: Canceled apid 411117 resId 357 \
pagg 1162

Apr 7 17:43:14 nid04096 pbs_mom: set_job, \

/opt/moab/default/tools/partition.create.xt4.pl \
--confirm -p 357 -j 5820475.nid00003 -a 1162

5820475;12800-12815; \

1239151395;1239151398; \
hclin;ping_pong; \
12804-12805

820475;12800-12815; \
1239151395;1239151400; \
hclin;ping_pong; \
12800-12803

5820475;12800-12815; \
1239151395;1239151405; \
hclin;ping_pong; \
12806-12813

5.4 MPMD job

#PBS -q debug
#PBS -l mppwidth=64
cd $PBS_O_WORKDIR
aprun -n 8 ./ping_pong : -n 32 ./ping_pong : \

-n 16 ./ping_pong

17:54:29: Confirmed apid 411173 resId 370 \

pagg 0 nids: 5787-5789,6586-6598
17:54:30: Bound Batch System ID 5820529 \

pagg 4171 to resId 370

17:54:31: Placed apid 411174 resId 370 \
pagg 4171 uid 40877 MPMD cmd ping_pong \
nids: 5787-5789,6586-6596

17:54:51: Released apid 411174 resId 370 \
pagg 4171 claim

17:55:10: Canceled apid 411173 resId 370 \
pagg 4171

Apr 7 17:54:30 nid04096 pbs_mom: set_job, \

/opt/moab/default/tools/partition.create.xt4.pl
--confirm -p 370 -j 5820529.nid00003 -a 4171

5820529;5787-5789,6586-6598; \

1239152071;1239152091; \
hclin;ping_pong; \
5787-5789,6586-6596

5.5 The aprunrpt display

At NERSC, the batch queue structure includes a

routing queue called regular, that dispatches jobs to either
the reg_small or reg_big execution queue, depending on
the job size, i.e., the mppwidth specification. The reg_big
jobs, those asking for 1024 or more nodes, get discounts.
Users can’t submit jobs directly to reg_big, the only way
to select the queue destination is through the resource
request.

Below is the aprunrpt display for the four example

jobs. Notice that job 5820475 is a job that ran aprun in
parallel, but it’s not gaming the system because of the job
size—it did not push the size to go from small to large to
get a discount

Job ID Reserved Used Start End User Command
5820466 16 16 09/04/07 17:37:37 09/04/07 17:37:57 hclin ping_pong
5820474 16 16 09/04/07 17:42:13 09/04/07 17:42:34 hclin ping_pong
 8 09/04/07 17:42:34 09/04/07 17:42:45 hclin ping_pong
 12 09/04/07 17:42:45 09/04/07 17:43:00 hclin ping_pong
5820475 16 2 09/04/07 17:43:15 09/04/07 17:43:18 hclin ping_pong
 4 09/04/07 17:43:15 09/04/07 17:43:20 hclin ping_pong
 8 09/04/07 17:43:15 09/04/07 17:43:25 hclin ping_pong
5820529 16 14 09/04/07 17:54:31 09/04/07 17:54:51 hclin ping_pong

CUG 2009 Proceedings 8 of 9

6. Challenges

6.1 Constructing timestamps

The apsched log is switched daily, therefore the

developer probably felt it’s not necessary to record the
date in the log. Fortunately the month and day can be
derived from the file name, which is something like
apached0407. Unfortunately, the year is not available
anywhere, thus the current year is assumed. This is
usually okay except when processing the December 31
log on January 1 the following year, or processing the
previous year’s apsched log in general. A “-y” command
line option is provided to the aprundat program to allow
the manual specification of a year to work around the
issue.

6.2 Finding job ID for apruns in syslog

When the aprundat script was being developed, the

Bound record in the apsched log did not have the
corresponding job ID. We had to get it from the set_job
record in the syslog. With the script being Perl, it’s
instinctive to use a hash to store the reservation ID and
job ID pairs. As mentioned previously, the syslog is
switched at boot time whenever needed, which means
each syslog contains multiple days of data, and as a result,
the daily run of the aprundat script builds a hash for
reservations occurred over multiple days. We quickly
found then, there were only a limited number of
reservation IDs available, when a reservation ID ws
recycled during the lifetime of a syslog, we wiped out
information for jobs using the same reservation ID
previously.

 Looking closely at the source records, we discovered

another common piece among the apsched records and
the syslog set_job record. We name this piece session ID,
which is unique during the life time of a job. On the
apsched records, it’s the number after the “pagg”
keyword, on the set_job record, it’s the specification to
the “-a” parameter. Using the combination of reservation
ID and session ID as the key for the job ID hash appeared
to have solved the issue of keeping all job IDs until one
day, when we had to process a syslog that spanned over a
longer than normal period of time. In order to handle this
atypical but not impossible situation, we added a third
dimension: time. The timestamp of a set_job record is not
used as part of the key, but is kept along with the job ID
in a chain identified by the key. The time information is
only fetched to break a tie.

7. Future Enhancements in Data Gathering
As mentioned in the Data Gathering section, in XT

2.1, job ID is available in the apsched log, there is no
need to process the syslog just to get job ID. But there is
some other information about applications that we’d like
to collect. The eventual goal is to provide a one-stop shop
for everything we ever want to know about NERSC user
applications. One thing requested by NERSC consultants
is complete aprun command line options specified for
each aprun. This turns out to be trivial, we just need to go
back to still processing two files. In the syslog, there is
one entry for each aprun where the command line is
displayed as specified. Below is such an entry for an
MPMD program.

Apr 11 20:26:40 nid00576 aprun[63195]:\

apid=437384, Starting, user=32407,\
cmd_line="aprun -n 32 -d 1 cpl : \

-n 32 –d 1 csim : \
-n 16 -d 1 clm : \
-n 96 -d 1 pop : \
-n 64 -d 1 cam",\

num_nodes=60, node_list=6454-6513

Another piece of information we’d like to have for

applications is their exit status. From examining the
console log kept on the SMW (System Management
Workstation), we identify at least two types of difficulties
applications ran into: OOM (out of memory) and
segmentation fault. Here are examples of such entries:

[2009-04-14 13:22:15][c5-4c0s2n0] \

Out of memory: Killed process 30142 (jfdtd3d). \
apid: 453270

[2009-04-14 13:16:42][c10-3c0s2n3] \
nwchem[30104]: \
segfault at 00000003204b1dd0 \
rip 0000000000ff5e35 rsp 00007fffffffb930 \
error 4

The challenge in including information supplied in
the console log is not having to parse yet another date
format, or converting the node specification from a
physical node location to nid number, it is how to get the
information out. The SMW is behind a firewall on a
private network. Currently we extract OOM entries from
the console log daily and e-mail them to interested parties.
We are looking for a way to automatically save the e-mail

CUG 2009 Proceedings 9 of 9

body to a file to be processed along with the apsched log
and syslog. We’ll look into using procmail for this.

8. Conclusion
Understanding aprun use patterns of NERSC

researchers was the motivation behind this project—we
were to answer the question whether users ran multiple
applications in parallel just to take advantage of the
NERSC policy in favoring large jobs. We screened the
daily reports from the aprunrpt script carefully, and
concluded that, no, users did not game the system. We see
apruns running in parallel, but users did not appear to do
that just so their jobs would run in the large queue. Thus
we did not do further systematic analysis, and also did not
change our charging policy.

The daily reports from the aprunrpt script provide

insight into how individual users/groups do their research.
The very first report showed a 15-node, 24-hour job that
launched aprun 41,007 times, with one node for each
aprun most of the time; but once in a while, the aprun
would use all 15 nodes. We got really concerned and
checked with NERSC consultants to confirm that they
knew about this research and why its jobs ran the way
they ran. But then if the MOM node crashed due to high
volume of apruns, we would know whom to blame! The
reports also provide an easy way to quantify the use of
software packages. NERSC pays for commercial software
packages, such as DDT, Q-Chem, and Molpro, it needs to
justify that the money is well spent. Even for non-
commercial products, it takes manpower to support them,
we need to justify the effort as well.

In addition to the intended use of the aprun data files,

we’ve found that the data files compiled daily can be
useful other ways. For example, we are currently trying to
see whether there is correlation between UMEs
(uncorrectable memory errors) and user applications, i.e.,
are some applications inclined to trigger memory chip
errors? Because the aprundat data files have the start/end
time and nodes list for each application, and there is a
time and node associated with each UME incident, it
should be trivial to match them up.

The decision to adopt a two-step approach is proven a

wise one. We’ll continue looking for ways to collect more
information about applications and to build even more
resourceful data files. We expect to find more uses for the
data.

Acknowledgments
This work was supported by the Director, Office of

Science, Division of Mathematical, Information, and
Computational Sciences of the U.S. Department of
Energy under contract number DE-AC02-05CH11231.

This research used resources of the National Energy

Research Scientific Computing Center, which is
supported by the Office of Science of the U.S.
Department of Energy.

The author would like to thank Michael Karo of Cray

for giving permission to use his slide and providing
additional information.

References
Man pages: intro_alps(1), apsched(1), aprun (1)
Michael Karo: ALPS Application Level Placement

Scheduler, CUG 2006 (slides)
Michael Karo: ALPS User Tutorial (Base Camp),

CUG 2007 (slides)
Michael Karo: ALPS Tutorial “ Ascent”, CUG 2008

(slides)

About the Author
Wendy Lin is a Systems Engineer at NERSC and the

Backup Analyst of Franklin. E-mail: hclin@lbl.gov.

